OF LANDAU-FLUID OPERATORS IN THE BOUT++ CODE

A. M. Dimits, I. Joseph, M. V. Umansky, P. W. Xi,* X. Q. Xu, LLNL

Presented at the 54th Annual Meeting of the APS Division of Plasma Physics Providence, RI, Oct 30, 2012

*also, School of Physics, Peking University Work performed for U.S. DOE by LLNL under Contract DE-AC52-07NA27344

Motivation and Introduction

Effective phase-mixing damping rate in Landau-fluid closure

$$\gamma \propto -\left|k_{\shortparallel}\right|v_{\mathrm{th}}$$

Specific example, with collisions

$$\nabla_{||}Q_{||}(z) \approx -8n_0v_{\rm th}^2 \int dk_{||} e^{ik_{||}z} \frac{k_{||}^2 T_{||}}{\sqrt{8\pi} |k_{||} |v_{\rm th} + (3\pi - 8) \nu_s}$$

- Such operators are easy to represent and efficient to calculate in Fourier (k_{\shortparallel}) space.
- When large (including background) spatial inhomogeneities are present in the phase-mixing operators, evaluation using Fourier methods becomes inefficient.

- With mesh-based schemes (finite difference, volume, element, etc.), it is straightforward to construct approximations to $(\nabla_{\shortparallel})^n \leftrightarrow (ik_{\shortparallel})^n$, but harder for, e.g., $|k_{\shortparallel}| \times k_{\shortparallel}^n = \mathrm{sgn}\,(k_{\shortparallel}) \times k_{\shortparallel}^{n+1}$.
 - not local in configuration space
- Direct use of the corresponding discretized configuration space kernel by convolution or matrix multiplication is potentially expensive.
 - $ightharpoonup N_g^2$ scaling vs. $N_g \log{(N_g)}$ of computational expense
- ACCURATE APPROXIMATIONS ARE POSSIBLE THAT CAN BE IMPLEMENTED WITH FOURIER-LIKE SCALING.

Basic idea

ullet Approximate 1/|k| as a sum of suitably scaled Lorentzians

$$\frac{1}{|k|} \approx \sum_{n=0}^{N} \frac{\alpha^n}{k^2 + \alpha^{2n}}$$

- Each individual component of the sum has the correct parity, but asymptotic dependence $1/k^2$ for large k.
- ullet With the above scaling of the height and width, successive terms approximately "fill in" successively higher parts of the $1/\left|k\right|$ curve
- \bullet The sum provides a quite good fit over some spectral range, which increases with N
- ullet Lorentzians in k space are inverses of Helmholtz operators in real space

Approximate calculation

- Discretize the Helmholtz equations
- Solve via a tridiagonal (for 2-point differences) or banded (for higher-order differences) matrix solution
- Direct solvers should work well
 - the matrices are well conditioned
 - parallelizeable along direction of solve
- Sum the results of the matrix solves

Accuracy of the basic approximation

• Look at how close to $\operatorname{sgn}\left(k\right)=k/\left|k\right|$ is

$$\psi(k; \alpha, \beta, N) = \beta k \sum_{n=0}^{N-1} \frac{\alpha^n}{k^2 + \alpha^{2n}} ?$$

• $\alpha = 5, \beta = 1.04, N = 7$

Accuracy of the basic approximation

Finite-grid effects

Compare exact, 3-point and 5-point approximations to k^2

$$K_{2}^{2}(k\Delta) = \left[2\sin(k\Delta/2)/\Delta\right]^{2}$$

$$K_{4}^{2}(k\Delta) = \frac{4}{3}\left[2\sin(k\Delta/2)/\Delta\right]^{2} - \frac{1}{3}\left[\sin(k\Delta)/\Delta\right]^{2}$$

Finite-grid effects

- Finite differences good to some $k_d=\hat{k}_d/\Delta$; $k_d\approx 0.8$ for 3-point; $k_d\approx 1.6$ for 5-point
- Given $\psi\left(\hat{k}\right)$ which fits the desired operator well for $\hat{k}_{min}\lesssim\hat{k}\lesssim\hat{k}_{max}$, scale \hat{k} by factor λ so that $\lambda\hat{k}_{max}=\hat{k}_d/\Delta$, i.e., $\lambda=\hat{k}_d/\left(\hat{k}_{max}\Delta\right)$.
- Then $\psi\left(k/\lambda\right)=\psi\left(k\Delta\hat{k}_{max}/\hat{k}_{d}\right)$ gives a good fit for $\hat{k}_{d}\hat{k}_{min}/\hat{k}_{max}\lesssim k\Delta\lesssim\hat{k}_{d}$, i.e., for all modes in system for $L\lesssim2\Delta\hat{k}_{max}/\hat{k}_{min}$.

Include collisions

- Can scale operator fit problem to obtaining a fit to k/(|k|+1)
- Can obtain reasonable fit by adjusting coefficient of first Lorentzian

$$\psi(k; \alpha, \beta, N) = \beta k \left[\frac{\eta}{k^2 + 1} + \sum_{n=1}^{N} \frac{\alpha^n}{k^2 + \alpha^{2n}} \right]$$

• $\alpha = 6, \beta = 1.15, N = 5, \eta = 0.5$

(B) (B) (E) (E) (E) 연속(C)

Implementation

• Non-Fourier approximation to 1/|k| and -|k| operator.

$$\begin{aligned} 1/|k| &\approx & \beta \sum_{n=0}^{N} \frac{\alpha^{n}}{k^{2} + (\alpha^{n}k_{0})^{2}} \\ -|k| &= & -\frac{k^{2}}{|k|} \approx -\beta \sum_{n=0}^{N} \alpha^{n} + \beta \sum_{n=0}^{N} \frac{\alpha^{3n}k_{0}^{2}}{k^{2} + (\alpha^{n}k_{0})^{2}} \end{aligned}$$

Use 3-point second difference for second derivative

$$\frac{\partial^2 \psi}{\partial z^2} \rightarrow \frac{1}{\Delta^2} (\psi_{i+1} + \psi_{i-1} - 2\psi_i)$$

$$\therefore k^2 \rightarrow K_2^2(k\Delta) = [2\sin(k\Delta/2)/\Delta]^2$$

• Periodic domain; "periodic tridiagonal" routine.

- $\alpha = 5, N = 7, \beta = 1.04.$
- System length= 2π ; 16 grid cells

Real Space

- $\alpha = 5, N = 7, \beta = 1.04.$
- System length= 2π ; 16 grid cells

Fourier Space

- $\alpha = 5, N = 7, \beta = 1.04.$
- System length= 2π ; 16 grid cells

Real Space

- $\alpha = 5, N = 7, \beta = 1.04.$
- System length= 2π ; 64 grid cells

Real Space

Non-Fourier has similar computational scaling to Fourier

- Non-Fourier, with fixed N, scales as N_z , c.f. N_z^2 for direct convolution
- Crossover point is at $N_z \approx 128 \Rightarrow$ advantage for $N_z \gtrsim 200$.

Collocation solution for Laplace inversion ansatz: $\eta_j(k) = b^j/(k^2 + b^{2j})$

• Collocation at uniformly spaced points b^i , for $i=-N,\dots N$ lead to the symmetric linear problem Ma=1 where

$$M_r^s = b^r b^s / (b^{2r} + b^{2s})$$

• F4or b = e the solutions are

N	2N+1	$[a^r]$
1	3	[1.84807, 1.68115, 1.84807]
2		[[[[[[[[[[[[[[[[[[[[
3	7	[1.53232, 0.300129, 0.811828, 0.575391, 0.811828, 0.300129, 1.53232]
4	9	[1.70273, -0.263771, 0.885701, 0.293448, 0.656293,]
5	11	[2.01764, -0.999102, 1.27026, -0.110205, 0.727017, 0.127763,]

However, error grows at edges of logarithmic interval

Uniform accuracy can be obtained with Chebyshev collocation points

- Chebyshev polynomial approximation can generate uniform error convergence over the logarithmic interval
 - For exponential interval b^N , first renormalize by taking the logarithm $\beta = \beta_0 \log b$
 - The Chebyshev collocation points β_s with 2N+1 polynomials, s=-N,...N, are

$$\beta_s = \cos((s-N)\pi/2N)$$
 \rightarrow $b_s = \exp(\beta_0\cos((s-N)\pi/2N))$

• Chebyshev solution for $\beta_0 = 1$:

N	2N+1	$[a^j]$
1	3	[1.6529, -0.142332, 1.6529]
2	5	[4.06838, -3.65237, 2.52162, -3.65237, 4.06838]
3	7	[16.8245,-22.0064,9.92733,-5.95441, 9.92733, -22.0064, 16.8245]
4	9	[82.5576, -124.155, 62.226, -30.1305, 22.6809,]
5	11	[445.908, -720.514, 409.297, -199.35, 110., -86.8868,]

Maximum error is similar, but now more uniform over logarithmic interval

5/7

Systematic collocation analysis → improved fits: collisionless

• Collisionless - good (near best) fit is of the form

$$1/|k| \approx \beta \sum_{n=1}^{N} \frac{\zeta_n}{k^2 + (\alpha^{n-1}\kappa_0)^2},$$

- Match exact and approximate forms at collocation points $k = k_n$, $k_n = \alpha^{n-1} \kappa_0$, $n = 2, 3, \ldots, N-1$, $k_0 = \kappa_0/\eta$, $k_N = \eta \alpha^{N-1} \kappa_0$.
- ullet ightarrow matrix problem that can be handled e.g., by Mathematica
- \bullet Extends spectral range of good fit by ~10-100 for given N, $\alpha.$

Improved fits vs. original fit

Collisional case introduces a scale length, the mean-free path: λ

- Key dimensionless parameter: $b = k_{max}\lambda$
- Now, collocation at points $k\lambda = b^s$ for $s = -N, \dots N$ generates the equation

$$M_r^s a^r = b^s / (i + b^s)$$

• For b = e the solutions are

N	2N+1	$[a^j]$
1		[0.19703, -0.0711661, 1.45587]
2	5	[0.0280711, 0.0210288, 0.470837, 0.155383, 1.53263]
3	7	[0.00382669, 0.00401212, 0.0966353, 0.261622,
		0.714043, 0.219054,1.5438]

• Again, error grows for the limit $k\lambda\gg 1$

I. Joseph (LLNL) Nonlinear GLF models APS-DPP 2012 6 / 7

Chebyshev collocation reduces error at large $k \sim k_{max}$

- Perform collocation at points $k\lambda = \exp{(s\beta_s)}$ where $\beta_s = \cos{((s-N)\pi/2N)}$ and s=-N,...N
- For b = e the solutions are

N	2N+1	$[a^j]$
1	3	[0.19703, -0.0711661, 1.45587]
2	5	[0.0308817, -0.00571965, 0.590679, -0.0967698, 1.68609]
3	7	[0.00571954, -0.00531807, 0.0514562, 0.451945, 1.03353, -0.960316, 2.30743]

Still may want to reduce error in middle of domain further ...

Systematic collocation analysis \rightarrow improved fits: collisional

• Good (near best) fit is of the form

$$1/(1+|k|) \approx \beta \sum_{n=-N}^{N} \frac{\zeta_n}{k^2 + \alpha^{2n}},$$

- collocation points: $k_n = \alpha^n$, $n = -N, \ldots, N-1$, $k_N = \eta \alpha^N$.
- $\alpha = 3, 4$; N = 3, 4; $\eta = 0.5, 0.6, 1$.

Effect of using sum of Lorentzians on the response functions

• We have implemented a set of Mathematica scripts, which reproduce the HP90 analytic calculations, and also modified them to give the effect of using the sum of Lorentzians for k/|k|.

Using exact k/|k| reproduces the HP90 3-field model

FIG. 1. The real and imaginary parts of the normalized response function $R(\zeta) = -\bar{n}T_0/n_0e\bar{\phi}$ vs the normalized frequency ζ . The solid lines are the exact kinetic result for a Maxwellian, $R(\zeta) = 1 + \zeta Z(\zeta)$. The dashed lines are from the three-moment fluid model with $\Gamma = 3$, $\mu_1 = 0$, and $\chi_1 = 2/\sqrt{\pi}$. The dotted lines are from the four-moment model.

Replacing k/|k| by the sum of Lorentzians approximation yields good fits to the Landau-fluid response functions

Effect of replacing k/|k| by sum of Lorentzians

Replacing k/|k| by the sum of Lorentzians approximation yields good fits to the Landau-fluid response functions

- considered local (q=-chi gradT) and nonlocal (qk=-ik/abs(k) Tk) models for the spectral response function.
- The calculation is done by fourier and non-Fourier methods, for comparison.
- Local non-Fourier means finite-difference, and nonlocal non-Fourier means the Lorentzian method (our main interest).
- Naming convention is: local/nonlocal <=> local=1/0, and similar for Fourier and non-Fourier.

Finite-difference and Fourier implementations of local (diffusive) heat flux in time evolution give response function in agreement with theoretical spectral analysis

Finite-difference and Fourier implementations of nonlocal heat flux in time evolution give response function in agreement with theoretical spectral analysis

Normalizing wavenumber k_{z0} must be chosen to have region of good fit overlap with resolved modes

- $k_0 = K_0 * \text{zperiod}$, where K_0 is an O(1) multiplier
- e.g., for parallel case, $\nabla_{\shortparallel}=\left(1/h_{y}\right)\partial_{y}$, so $k_{\shortparallel0}=K_{y0}/\sqrt{g_{yy}\left(y_{0}\right)}$.
 - $lack \sqrt{g_{yy}\left(y_0
 ight)}=h_y\left(y_0
 ight)$ is a measure of the parallel connection length

BOUT++ tests: Parallel advection across parallel boundary

 Gaussian source pulse initialized away from parallel boundary advects across boundary with correct shift

BOUT++ tests: Parallel Laplace Solver

- Parallel (direction) Laplace solver gives sensible solutions with twist-shift boundary condition
- Reconstructed source function is consistent with original source function

Single Helmholtz inversion

reconstructed source

BOUT++ tests: Implementation of non-Fourier sum-of-Lorentzians for parallel Landau-fluid operator

 Non-Fourier LF operator gives sensible solutions with twist-shift boundary condition

Toroidal Landau-fluid ($|\omega_d|$) closure

• Example from Beer '96 - 3+1 equations:

$$\begin{array}{lll} \frac{du_{||}}{dt} & = & \mathrm{stuff} - 4i\omega_{d}u_{||} - 2\left|\omega_{d}\right|\nu_{5}u_{||} \\ \frac{dp_{||}}{dt} & = & \mathrm{stuff} - i\omega_{d}\left(7p_{||} + p_{\perp} - 4n\right) - 2\left|\omega_{d}\right|\left(\nu_{1}T_{||} + \nu_{2}T_{\perp}\right) \\ \frac{dp_{\perp}}{dt} & = & \mathrm{stuff} - i\omega_{d}\left(5p_{\perp} + p_{||} - 3n\right) - 2\left|\omega_{d}\right|\left(\nu_{3}T_{||} + \nu_{4}T_{\perp}\right) \end{array}$$

Toroidal Landau-fluid ($|\omega_d|$) closure

• Linear forms for $i\omega_d$

$$\begin{array}{lcl} i\omega_{d}\Phi & = & i\mathbf{V}_{d}\cdot\mathbf{k}_{\perp}\Phi \\ & = & \frac{1}{2(T_{\mathrm{norm}}B_{0})}\left[\frac{T_{\perp0}}{B_{0}}\hat{\mathbf{b}}\times\nabla B_{0}\cdot\nabla + T_{\shortparallel0}\hat{\mathbf{b}}\times\left(\hat{\mathbf{b}}\cdot\nabla\hat{\mathbf{b}}\right)\cdot\nabla\right]\Phi \end{array}$$

- ullet Need to add correct combination and generalize T_0 to finite amplitude
- To get coefficients for modified version of <code>invert_laplace</code>, decompose \mathbf{V}_d and $\nabla\Phi$ into components

$$\mathbf{V}_{d} = V_{d}^{i} \mathbf{e}_{i}$$

$$\nabla \Phi = \mathbf{e}^{i} \partial_{i} \Phi$$

$$\mathbf{V}_{d} \cdot \nabla \Phi = V_{d}^{i} \partial_{i} \Phi$$

BOUT++ implementation

- \bullet Components V_d^1 , V_d^3 easily calculated with existing routines in BOUT++
- Basic Helmholtz equation can be solved using a modified version of existing perpendicular Laplace solver
 - Current equation is of the form

$$\left(c_1 k_z^2 - c_2 \partial_{\psi}^2 + c_3\right) \Phi = S$$

Modify to solve

$$\left\{ \left[(V_d^z)^2 k_z^2 - (V_d^\psi)^2 \partial_\psi^2 - 2iV_d^\psi V_d^z k_z \partial_\psi \right] + \alpha^2 (V_d^z)^2 k_{z0}^2 \right\} \Phi = S$$

BOUT++ tests: Perpendicular Laplace solver for $|\omega_d|$ terms

- Perpendicular (direction) Laplace solver gives sensible solutions
- Spreading by Helmholtz inversion is in the same direction as advection

Perp Helmholtz inversion t=8

(solutions with periodic radial BC's)

Conclusions

- We have developed a new non-Fourier method for the calculation of Landau-fluid operators.
- Useful for situations with large (including background) spatial inhomogeneities.
- Good accuracy (relative error $\lesssim 1\%$ over wide spectral range) is readily achievable.
- Computational cost has value and scaling similar to Fourier method.
- Considerable advantage over direct convolution or matrix multiplication for $N_q \gtrsim 200$.
- Readily applied to toroidal phase-mixing operators ($|\omega_{\rm d}|$).
- Method is also useful for capturing correct asymptotic form of gyrofluid operators.